Abstract
Since the invention of cameras, video shooting has become a passion for human. However, the quality of videos recorded with devices such as handheld cameras, head cameras, and vehicle cameras may be low due to shaking, jittering and unwanted periodic movements. Although the issue of video stabilization has been studied for decades, there is no consensus on how to measure the performance of a video stabilization method. In many studies in the literature, different metrics have been used for comparison of different methods. In this study, deep convolutional neural networks are used as a decision maker for video stabilization. VGG networks with different number of layers are used to determine the stability status of the videos. It was observed that VGG networks showed a classification performance up to 96.537% using only two consecutive scenes. These results show that deep learning networks can be utilized as a metric for video stabilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.