Abstract
The Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the US developmental roadmap to fusion energy. The spherical tokamak-based FNSF has been designed through a national collaborative effort led by the Princeton Plasma Physics laboratory. High-temperature superconducting (HTS) magnets are potentially attractive for such applications. Among other aspects, the magnet shielding and tritium breeding assessments represent key elements for achieving the design engineering objectives. Numerous inboard shielding and cooling materials have been examined to select an optimal shield that protects the inboard HTS magnet and in the meanwhile enhances the outboard breeding. The breeding blanket of choice is the dual-cooled lead lithium (DCLL) blanket. Our 3-D neutronics model included all blanket internals in great details along with nine specialized ports for blanket testing, materials testing, plasma heating, and current drive. The inclusion of a thin DCLL blanket on the inboard side was deemed necessary to achieve an overall tritium breeding ratio in excess of unity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.