Abstract

Whole Slide Imaging and Hyperspectral Microscopic Imaging provide great quality data with high spatial and spectral resolution for histopathology. Existing Hyperspectral Whole Slide Imaging systems combine the advantages of the techniques above, thus providing rich information for pathological diagnosis. However, it cannot avoid the problems of slow acquisition speed and mass data storage demand. Inspired by the spectral reconstruction task in computer vision and remote sensing, the Swin-Spectral Transformer U-Net (SSTU) has been developed to reconstruct Hyperspectral Whole Slide images (HWSis) from multiple Hyperspectral Microscopic images (HMis) of small Field of View and Whole Slide images (WSis). The Swin-Spectral Transformer (SST) module in SSTU takes full advantage of Transformer in extracting global attention. Firstly, Swin Transformer is exploited in space domain, which overcomes the high computation cost in Vision Transformer structures, while it maintains the spatial features extracted from WSis. Furthermore, Spectral Transformer is exploited to collect the long-range spectral features in HMis. Combined with the multi-scale encoder-bottleneck-decoder structure of U-Net, SSTU network is formed by sequential and symmetric residual connections of SSTs, which reconstructs a selected area of HWSi from coarse to fine. Qualitative and quantitative experiments prove the performance of SSTU in HWSi reconstruction task superior to other state-of-the-art spectral reconstruction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.