Abstract
Intracranial aneurysm (IA) is a prevalent disease that poses a significant threat to human health. The use of computed tomography angiography (CTA) as a diagnostic tool for IAs remains time-consuming and challenging. Deep neural networks (DNNs) have made significant advancements in the field of medical image segmentation. Nevertheless, training large-scale DNNs demands substantial quantities of high-quality labeled data, making the annotation of numerous brain CTA scans a challenging endeavor. To address these challenges and effectively develop a robust IAs segmentation model from a large amount of unlabeled training data, we propose a triple learning framework (TLF). The framework primarily consists of three learning paradigms: pseudo-supervised learning, contrastive learning, and confident learning. This paper introduces an enhanced mean teacher model and voxel-selective strategy to conduct pseudo-supervised learning on unreliable labeled training data. Concurrently, we construct the positive and negative training pairs within the high-level semantic feature space to improve the overall learning efficiency of the TLF through contrastive learning. In addition, a multi-scale confident learning is proposed to correct unreliable labels, which enables the acquisition of broader local structural information instead of relying on individual voxels. To evaluate the effectiveness of our method, we conducted extensive experiments on a self-built database of hundreds of cases of brain CTA scans with IAs. Experimental results demonstrate that our method can effectively learn a robust CTA scan-based IAs segmentation model using unreliable labeled data, outperforming state-of-the-art methods in terms of segmentation accuracy. Codes are released at https://github.com/XueShuangqian/TLF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.