Abstract

The Cl- binding properties in the successive oxidation states of the O2 evolving complex of photosystem II were investigated by measurements of UV absorbance changes, induced by a series of saturating flashes, that monitor manganese oxidation state transitions. In dark-adapted, intact photosystem II, Cl- can be replaced by NO3- in minutes, in an exchange reaction that depends on the NO3- concentration and that is not rate-limited by dissociation of Cl- from its binding site. Preillumination of dark-adapted photosystem II by one or two flashes accelerated the NO3- substitution reaction by an order of magnitude. A quantitative analysis of the Cl- concentration dependence of UV absorbance changes, measured in photosystem II preparations depleted of extrinsic 17 and 23 kDa polypeptides, shows that the Cl- binding properties of photosystem II change with the oxidation state of the oxygen evolving complex. Although the affinity for the individual S-states could not be determined with precision, it is shown that the affinity is an order of magnitude lower in the S2 state than in the S1 state. Comparison of the results obtained using intact photosystem II and preparations depleted of the 17 and 23 kDa extrinsic polypeptides suggests that these proteins constitute a diffusion barrier, which prevents fast equilibration of the Cl- binding site with the medium, but does not change the Cl- affinity of the binding site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call