Abstract

Genetic diversity and differences among durum-wheat cultivars evolved in various regions of the world are important for sustainable production in the current climate change scenario. Information regarding genetic differences was also important for the correct choice of parental material for the selection of high quality cultivars. Two elite and six obsolete cultivars of durum-wheat were characterized with 25-simple sequence repeats (SSR) markers. All accessions were evaluated for 2-agronomic-traits (Yield (Y) and Thousand-Kernel-Weight (TKW)) and 11 grain quality-traits (grain protein content (GPC), grain moisture contents (H), carotene content (CT), sedimentation test (SDS), gluten content (GC), gluten index (GI), semolina color index (L*, a*, b*) and alveographic parameters (W and P/L)) under randomized complete block design with three replication for two crop seasons (2015-2017). Genetic characterization through SSR markers revealed 126 alleles with an average of 5.04 alleles locus-1 and had average 0.79 polymorphism information content (PIC). The comparisons revealed that elite accessions were more productive in terms of grain yield and TKW, whereas obsolete accessions showed high GPC and end-use quality-traits. The generated dendrogram based on SSR markers, agronomic, seed quality-traits clearly differentiate the genotypes in two main groups obsolete and elite accessions. Analysis of correlation revealed a significant association between the traits TKW, Y, b*, a*, GPC, GC, SDS and H. High genetic diversity found between elite and obsolete cultivars for parameters such as yield, end-use quality and their correlation with SSR markers could help breeders for an eventual breeding program on durum-wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call