Abstract

Aptamers are a new class of single-stranded DNA/RNA molecules selected from synthetic nucleic acid libraries for molecular recognition. Our group reports a novel aptamer column for the removal of trace (ng/L) pharmaceuticals in drinking water. In this study, cocaine and diclofenac were chosen as model molecules to test the aptamer column which presented high removal capacity, selectivity, and stability. The removal of pharmaceuticals was as high as 88-95%. The data of adsorption were fitted with Langmuir isotherm and a pseudo-second-order kinetic model. A thermodynamic experiment proved the adsorption processes were exothermic in spontaneity. The kinetics of aptamer was composed of three steps: activation, binding, and hybridization. The first step was the rate-controlling step. The adsorption system was divided into three parts: kinetic, mixed, and thermodynamic zones from 0% to 100% binding fraction of aptamer. Furthermore, the aptamer column was reusable and achieved strong removal efficiency from 4 to 30 °C at normal cation ion concentration (5-100 mg/L) for multipollutants without cross effects and secondary pollution. This work indicates that aptamer, as a new sorbent, can be used in the removal of persistent organic pollutants, biological toxins, and pathogenic bacteria from surface, drinking, and ground water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call