Abstract

Global warming, pandemics, and poverty are the evidences of human destruction of the planet. Excavating and disposing of fertile soils destructively effect wildlife and nature and causes natural disasters such as fires and flooding leading to economic losses and casualties. This study investigates the effects of mechanical and chemical stabilization agents on the shrinkage of marine deposited clays. Three different sustainable materials such as polypropylene fibers, wood ash, and copper slag were used to reduce cement usage in resisting shrinkage problem of the studied clay. Then, the prepared specimen was brought to a slurry state to produce a mix of adequate workability and erase the structure of clay to better highlight the effect of replacement materials. In a controlled environment, the specimens were subjected to free shrinkage and specimen height, diameter, and mass were measured at regular intervals until the dried condition was reached and no further change was monitored. The measurements were then averaged for each set of mix to calculate axial, radial, and volumetric shrinkage strains as well as weight loss. The obtained data were further statistically assessed by evaluating the individual impact of each controllable factor and second-order interaction of cement and fiber. The results indicated that a mix of 1% fiber and 7% cement performed best for reducing the volumetric shrinkage of the clay. Furthermore, the availability of aluminous elements in clay accelerated the chemical interaction with cement and wood ash particles, forming a densified composite structure. This interaction appears to isolate the available moisture in the particles and restrict weight loss, resulting in reduced volumetric shrinkage of wood ash treated specimens. In addition to the environmental and economic benefits of cement usage reduction, using harmful waste materials such as recycled polypropylene fiber, wood ash, and copper slag enable their safe disposal. Incorporating such materials in-situ requires no specific tools; field application is conventional and straightforward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call