Abstract

This paper provides new trace element and Sr-Nd-Hf-Pb-O isotope data on Neoproterozoic to Phanerozoic mid to upper crustal lithologies of the Andean basement in central Chile and western Argentina (33°-35°S; 69°-72°W). It also provides additional data on trench sediments being subducted offshore the northern segment of the Southern Volcanic Zone in Chile. Neoproterozoic metamorphic and igneous rocks from the Guarguaráz complex (Argentina; 33.6°S, 69.5°W), when back corrected to 350 Ma, display a narrow range in 87Sr/86Sri (0.713–0.718), 143Nd/144Ndi (0.5118–0.5121), εNdi (−8.1 to −1.1), εHfi (−11.4 to +1.2) and δ18O (9–13‰). Nd model ages (TDM = 1.08–1.65 Ga) for the Guarguaráz complex points to a Mesoproterozoic crustal residence age for these rocks. Metasedimentary rocks from the Carboniferous accretionary prism in central Chile (~34°S) overlap with these ranges, but differ by having lower initial 87Sr/86Sri (0.7052–0.7093) and higher δ18O (14–17‰). The Guarguaráz metamorphic and igneous rocks, when back corrected to 350 Ma, have similar Pb isotope ratios than the Chilean Carboniferous metasedimentary rocks (206Pb/204Pbi = 17.58–18.52 vs. 18.33–18.46; 207Pb/204Pbi = 15.50–15.64 vs. ~15.64; 208Pb/204Pbi = 37.70–38.36 vs. 37.98–38.18). Two Guarguaráz samples are shifted towards less radiogenic Pb isotope ratios, similar to samples representative of the Cuyania basement. This suggests that Chilenia hosts at least two geochemical components: (1) a component with unradiogenic Pb isotopes, similar to the Proterozoic Cuyania basement, and (2) a component with more radiogenic Pb isotopes, similar to Chilean Phanerozoic metasedimentary and igneous rocks. The ranges in Pb isotope ratios for the Chilean Mesozoic (206Pb/204Pbi = 18.44–19.86; 207Pb/204Pbi = 15.59–15.69; 208Pb/204Pbi = 38.30–40.30) and Miocene (206Pb/204Pbi = 18.43–18.57; 207Pb/204Pbi = 15.58–15.60; 208Pb/204Pbi = 38.33–38.46) igneous rocks are similar to those of the accretionary prism. The Mesozoic and Miocene intrusive rocks are characterized by low 87Sr/86Sri (0.704–0.708 and ~0.704, respectively) and high εNdi (−6.2 to +4.0 and + 3.9 to +5.9, respectively) and εHfi (+7.0 to +12.7 and + 8.5 to +10.8, respectively). They can be divided into two groups. Group (1), consisting exclusively of Mesozoic samples, has negative εNdi, 87Sr/86Sri > 0.706, elevated e.g., Ba/Th, Nb/Yb, Zr/Y and lower Nb/La, reflecting derivation from enriched (most likely overriding crust or mantle) material. Group (2), consisting of Mesozoic and Miocene rocks, has positive εNdi, εHfi, and lower initial 87Sr/86Sri than group (1) reflecting depleted mantle melts addition to the crust. Finally, Sr-Nd-O isotopic compositions of the trench sediments at latitude 33°-33.3°S are almost identical to those at latitude 35°-40°S, indicating a relative homogeneous material input along the SVZ, although there are subtle differences in REE and Pb isotopic compositions. Based on Nd–Hf isotopes, trench sediments offshore Chile (εNd> +1; εHf > +2) and offshore Peru (εNd < −2; εHf < +1) have distinct compositions, reflecting the differences in input material. The positive εNd and εHf values suggest derivation from eroded depleted mantle-derived mafic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call