Abstract

Dissolved Sr and 87Sr/86Sr are measured in the Narmada, Tapi and the Mandovi estuaries linked to the eastern Arabian Sea. The concentration of dissolved Sr and 87Sr/86Sr in the river water endmembers show significant differences reflecting the lithologies they drain. The distribution of Sr in all these estuaries shows a near perfect two endmember mixing between river water and seawater suggesting that there is no discernible net addition/removal of Sr from the estuarine waters. In contrast, 87Sr/86Sr shows non-conservative behaviour in all these estuaries, its distribution exhibits significant departure from the theoretical mixing lines. A likely mechanism for this difference in the behaviour between dissolved Sr and its 87Sr/86Sr is the discharge of submarine groundwater (SGD) which can modify the 87Sr/86Sr of the estuarine waters by exchange with sediments without causing measurable changes in Sr concentration. The impact of such an exchange process on the 87Sr/86Sr of the estuaries and therefore on the Sr isotope composition of dissolved Sr entering the Arabian Sea differs among the three estuaries and also between seasons in the Narmada. The non-conservative behaviour of 87Sr/86Sr provides a handle to estimate the quantum of SGD to these estuaries. The Sr concentration, 87Sr/86Sr ratio and salinity of the submarine groundwater and estimate of its fluxes to the Narmada estuary have been made using inverse model calculations. The model derived SGD flow rates are ∼5 and 280cm/day during pre-monsoon and monsoon, respectively. The more radiogenic Sr isotope composition of SGD relative to the seawater suggests that SGD acts as an additional source of 87Sr to the Arabian Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call