Abstract

Axoplasmic organelles obtained from the squid giant axon move on actin filaments at an average velocity of 1 μm/s [Nature 356 (1992) 722]. The unconventional myosins, in particular, the myosin-V class of motor proteins, represent the most likely candidates to have a role in this motility. Experiments were performed to determine whether a member of the myosin-V class of unconventional myosins is present in axoplasm and optic lobes. Western blots of axoplasm probed with an affinity purified antibody to chicken brain myosin-V (CBM-V) showed cross-reactivity with a protein of Mr 196 kD (p196) which was subsequently purified from squid optic lobes using a modification of a protocol for the purification of CBM-V [Methods Enzymol. 298 (1998) 3; Cell 75 (1993) 215]. Western blots of CBM-V probed with an α-p196 polyclonal IgG showed cross-reactivity with CBM-V. Purified p196 has been found to be a calmodulin (CaM) binding protein that possesses calcium-stimulated actin-activated ATPase activity. Equilibrium density fractionation of motile axoplasmic organelle preparations has revealed that p196 cosedimented with the peak organelle fraction into Percoll gradients in the presence of cytochalasin B and ATP. Based on this evidence, we conclude that the p196 present in axoplasm and purified from optic lobes is a squid homolog of CBM-V and functions as a motor for fast transport of membranous organelles on actin filaments in neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call