Abstract

The squid giant axon provides an excellent model system for the study of actin-based organelle transport likely to be mediated by myosins, but the identification of these motors has proven to be difficult. Here the authors purified and obtained primary peptide sequence of squid muscle myosin as a first step in a strategy designed to identify myosins in the squid nervous system. Limited digestion yielded fourteen peptides derived from the muscle myosin which possess high amino acid sequence identities to myosin II from scallop (60–95%) and chick pectoralis muscle (31–83%). Antibodies generated to this purified muscle myosin were used to isolate a potential myosin from squid optic lobe which yielded 11 peptide fragments. Sequences from six of these fragments identified this protein as a myosin II. The other five sequences matched myosin II (50–60%, identities), and some also matched unconventional myosins (33–50%). A single band that has a molecular weight similar to the myosin purified from optic lobe copurifies with axoplasmic organelles, and, like the optic lobe myosin, this band is also recognized by the antibodies raised against squid muscle myosin II. Hence, this strategy provides an approach to the identification of a myosin associated with motile axoplasmic organelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.