Abstract

This work develops a finite element based multi-mass flexible rotor model for theoretical investigation of the influence of the squeeze film damper lubricant inertia on the unbalance-induced steady-state and transient vibration amplitudes of high speed turbomachinery. The rotordynamic model is developed by applying the principles of finite element analysis to discretize the rotor components, including the rotor shaft and disk, into local elements with mass, stiffness, and gyroscopic matrices. Subsequently, the local matrices are assembled together to develop the global model of the rotordynamic system. The influence of squeeze film damper lubricant inertia is incorporated into the model by using short-length cavitated damper models with retaining springs executing circular-centered orbits. Additionally, the rotordynamic model incorporating the nonlinear squeeze film damper models is iteratively solved in the time domain by applying a predictor-corrector transient modal integration numerical method and the steady-state and transient motions of the rotor system are investigated under different rotor and squeeze film damper parameters. The results of the study verify the substantial influence of squeeze film damper lubricant inertia on attenuating the vibrations of high-speed turbomachinery. Furthermore, the developed rotordynamic model delivers an efficient and powerful platform for the analysis of high-speed turbomachinery, including jet engines and gas turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call