Abstract

This work represents a pressure distribution model for finite length squeeze film dampers (SFDs) executing small amplitude circular-centered orbits (CCOs) with application in high-speed turbomachinery design. The proposed pressure distribution model only accounts for unsteady (temporal) inertia terms, since based on order of magnitude analysis, for small amplitude motions of the journal center, the effect of convective inertia is negligible relative to unsteady (temporal) inertia. In this work, the continuity equation and the momentum transport equations for incompressible lubricants are reduced by assuming that the shapes of the fluid velocity profiles are not strongly influenced by the inertia forces, obtaining an extended form of Reynolds equation for the hydrodynamic pressure distribution that accounts for fluid inertia effects. Furthermore, a numerical procedure is represented to discretize the model equations by applying finite difference approximation (FDA) and to numerically determine the pressure distribution and fluid film reaction forces in SFDs with significant accuracy. Finally, the proposed model is incorporated into a simulation model and the results are compared against existing SFD models. Based on the simulation results, the pressure distribution and fluid film reaction forces are significantly influenced by fluid inertia effects even at small and moderate Reynolds numbers.

Highlights

  • According to the classic lubrication theory, the pressure distribution in the annular region of a squeeze film damper is determined by using Reynolds equation, where it is assumed that the inertial forces are negligible relative to viscous forces (i.e., Re ≈ 0) [1]

  • The numerical algorithm that was developed in the previous section is incorporated into Matlab to evaluate the effect of SFD operating parameters on the lubricant pressure distribution and the fluid film reaction forces

  • This work represented a hydrodynamic pressure distribution model for squeeze film dampers incorporated into highspeed turbomachinery

Read more

Summary

Introduction

According to the classic lubrication theory, the pressure distribution in the annular region of a squeeze film damper is determined by using Reynolds equation, where it is assumed that the inertial forces are negligible relative to viscous forces (i.e., Re ≈ 0) [1]. Circular-centered motions of the journal center are a very common type of journal motion in industrial applications of squeeze film dampers, including vertical rotors mounted on SFDs, horizontal rotors mounted on SFDs with centralizing springs, and rotors operating close to critical velocities and for rotor response to large unbalance forces [9] This CCO condition is typically assumed for SFDs with centering elements. San Andres and Vance [9, 11] have further emphasized the significant effect of fluid inertia on dynamic performance of squeeze film dampers executing small amplitude CCOs by representing the effect of fluid inertia on SFD force coefficients for both central and off-centered motions of the journal center. The pressure distribution is numerically integrated over the journal surface to calculate the fluid film reaction force components

Governing Equations
Numerical Solution
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call