Abstract

This work develops inertial expressions for the lubricant pressure distribution and fluid velocity components for squeeze film dampers (SFDs) executing small amplitude circular centered orbits (CCO), by applying a first order perturbation to the fluid equations. For small amplitude motions of the journal center, it is assumed that the fluid convective inertia terms are negligible relative to the unsteady (temporal) inertia terms. Firstly, a first order perturbation is applied to the pressure and velocity components in the flow equations. Subsequently, the flow equations are solved for the zeroth-order (i.e. non-inertial) velocities and the first-order (i.e. inertial) velocities. The velocity components are incorporated into the flow equations to develop separate expressions for the zeroth-order and the first order pressures. Furthermore, the pressure expressions are numerically solved by applying finite difference approximations to the equations. Finally, a simulation model is developed to determine the lubricant pressure distribution and fluid film reaction forces for different damper operating parameters, including Reynold’s number (i.e. inertia effect), journal eccentricity ratio, and bearing slenderness ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.