Abstract

A theoretical study of squeeze film behaviour for a finite journal bearing lubricated with couple stress fluids is presented. On the basis of the microcontinuum theory, the modified Reynolds equation is obtained by using the Stokes equations of motion to account for the couple stress effects due to the lubricant blended with various additives. With the Conjugate Gradient Method of iteration the built-up pressure is calculated, and then applied to predict the squeeze film characteristics of the system. According to the results evaluated, the rheological influence of couple stress fluids is physically apparent. Compared with the case of a Newtonian lubricant, the couple stress effects increase the load-carrying capacity significantly and lengthen the response time of the squeeze film behaviour. On the whole, the presence of couple stresses improves the characteristics of finite journal bearings operating under pure squeeze film motion. The rheological effects of couple stress fluids agree with previous works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call