Abstract

Abstract When a liquid lubricant film fractionates into disjointed liquid bridges, or a unique liquid bridge forms between solid surfaces, capillary forces strongly influence the action of the fluid on the solid surfaces. This paper presents a theoretical analytical model to calculate the normal forces on the solid surfaces when squeezing a flat liquid bridge. The model takes into account hydrodynamic and capillary effects and the evolution of the geometry of the liquid bridge with time. It is shown that the global normal force reverses during the squeezing motion except in the case of perfect nonwetting; it is attractive at the beginning of the squeezing motion, and becomes repulsive at small gaps. When the external load is constant, capillary suction tends to accelerate the decrease in gap dramatically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call