Abstract

This study examines the influence of surface roughness on the capillarity of liquid bridges between two solid surfaces and the wettability of droplets on solid surfaces. For this purpose, different surface roughnesses were prepared by gluing waterproof sandpaper onto flat glass surfaces. The effects of surface roughness on liquid bridge capillarity were investigated by using a method that is based on an exact analytical solution of the Young-Laplace equation for a liquid bridge between two parallel planes coupled with capillary force measurement. The capillary forces between two parallel planes were measured by a micro-balance, while the geometries of the capillary bridge were recorded using a high-resolution camera. Using the images of capillary bridges, the meridional profiles of capillary bridges were determined by a high-resolution image processing technique and correlated to the measured capillary forces. The effects of surface roughness on droplet wetting were measured by employing the same high-resolution image processing technique. The measured results show that as the roughness increases, the wetting angle increases, whereas the capillary forces of the liquid bridge decrease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.