Abstract

Sb-doped silicon nanocrystals (Si–NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8[Formula: see text]at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si–NCs films as emitter layers, Si–NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si–NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8[Formula: see text]at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si–NCs can be good candidates for all-silicon tandem solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call