Abstract

Influenza A virus causes acute respiratory infections that induce annual epidemics and occasional pandemics. Although a number of studies indicated that the virus-induced intracellular signaling events are important in combating influenza virus infection, the mechanism how specific molecule plays a critical role among various intracellular signaling events remains unknown. Raf/MEK/extracellular signal-regulated kinase cascade is one of the key signaling pathways during influenza virus infection, and the Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein has recently been identified as a negative regulator of Raf-dependent extracellular signal-regulated kinase activation. Here, we examined the role of Raf/MEK/extracellular signal-regulated kinase cascade through sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein in influenza A viral infection because the expression of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein was significantly enhanced in human influenza viral-induced pneumonia autopsy samples. Prospective animal trial. Research laboratory. Wild-type and sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice inoculated with influenza A. Wild-type or sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice were infected by intranasal inoculation of influenza A (A/PR/8). An equal volume of phosphate-buffered saline was inoculated intranasally into mock-infected mice. Influenza A infection of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 knockout mice led to higher mortality with greater viral load, excessive inflammation, and enhanced cytokine production than wild-type mice. Administration of MEK inhibitor, U0126, improved mortality and reduced both viral load and cytokine levels. Furthermore, bone marrow chimeras indicated that influenza A-induced lung pathology was most severe when sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 expression was lacking in nonimmune cell populations. Furthermore, microarray analysis revealed knockdown of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 led to enhanced phosphatidylinositol 3-kinase signaling pathway, resulting that viral clearance was regulated by sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 expression through the phosphatidylinositol 3-kinase signaling pathway in murine lung epithelial cells. These data support an important function of sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 in controlling influenza virus-induced pneumonia and viral replication. Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein-2 may be a novel therapeutic target for controlling the immune response against influenza influenza A virus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call