Abstract
We study how to formalize in the Coq proof assistant the smallest projective space PG(3,2). We then describe formally the spreads and packings of PG(3,2), as well as some of their properties. The formalization is rather straightforward, however as the number of objects at stake increases rapidly, we need to exploit some symmetry arguments as well as smart proof techniques to make proof search and verification faster and thus tractable using the Coq proof assistant. This work can be viewed as a first step towards formalizing projective spaces of higher dimension, e.g. PG(4,2), or larger order, e.g. PG(3,3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Electronic Proceedings in Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.