Abstract

The current paper is devoted to the study of spreading speeds and traveling wave solutions of the following parabolic-elliptic chemotaxis system, \begin{document}$\label{IntroEq0-2}\begin{cases}u_{t}=Δ{u}-χ\nabla·(u\nabla{v})+u(1-u),{x}∈\mathbb{R}^N,\\{0}=Δ{v}-v+u,{x}∈\mathbb{R}^N,\end{cases}$ \end{document} where $u(x, t)$ represents the population density of a mobile species and $v(x, t)$ represents the population density of a chemoattractant, and $χ$ represents the chemotaxis sensitivity. We first give a detailed study in the case $N=1$. In this case, it has been shown in an earlier work by the authors of the current paper that, when $0 \begin{document}$\mathop {\lim }\limits_{t \to \infty } \mathop {\sup }\limits_{|x| \le ct} [|u(x,t;{u_0}) - 1| + |v(x,t;{u_0}) - 1|] = 0\quad \forall {\mkern 1mu} {\mkern 1mu} 0 and \begin{document}$\mathop {\lim }\limits_{t \to \infty } \mathop {\sup }\limits_{|x| \le ct} [u(x,t;{u_0}) + v(x,t;{u_0})] = 0\quad \forall {\mkern 1mu} {\mkern 1mu} c > c_ + ^*(\chi ).$ \end{document} We also show that if $0 \begin{document}$\mathop {\lim }\limits_{\chi \to 0} {c^*}(\chi ) = \mathop {\lim }\limits_{\chi \to 0} c_ + ^*(\chi ) = \mathop {\lim }\limits_{\chi \to 0} c_ - ^*(\chi ) = 2.$ \end{document} We then consider the extensions of the results in the case $N=1$ to the case $N \ge 2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.