Abstract

The present paper is concerned with the spatial spreading speeds and traveling wave solutions of cooperative systems in space-time periodic habitats with nonlocal dispersal. It is assumed that the trivial solution ${\bf u} = {\bf 0}$ of such a system is unstable and the system has a stable space-time periodic positive solution ${\bf u^*}(t,x)$. We first show that in any direction $ξ∈ \mathbb{S}^{N-1}$, such a system has a finite spreading speed interval, and under certain condition, the spreading speed interval is a singleton set, and hence, the system has a single spreading speed $c^{*}(ξ)$ in the direction of $ξ$. Next, we show that for any $c>c^{*}(ξ)$, there are space-time periodic traveling wave solutions of the form ${\bf{u}}(t,x) = {\bf{Φ}}(x-ctξ,t,ctξ)$ connecting ${\bf u^*}$ and ${\bf 0}$, and propagating in the direction of $ξ$ with speed $c$, where $Φ(x,t,y)$ is periodic in $t$ and $y$, and there is no such solution for $c<c^{*}(ξ)$. We also prove the continuity and uniqueness of space-time periodic traveling wave solutions when the reaction term is strictly sub-homogeneous. Finally, we apply the above results to nonlocal monostable equations and two-species competitive systems with nonlocal dispersal and space-time periodicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call