Abstract
This paper is devoted to the study of spatial dynamics of a class of partially sedentary integro-difference population models in a periodic habitat. For the general case of recruitment functions, we establish the existence and computation formula of spreading speeds. It is shown that the spreading speed is linearly determinate and coincides with the minimal wave speed of periodic traveling waves. Some effects of dispersal kernels, spatially variations and dispersal probabilities on spreading speeds are also investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have