Abstract
We consider a class of cooperative reaction-diffusion systems with free boundaries in one space dimension, where the diffusion terms are nonlocal, given by integral operators involving suitable kernel functions, and they are allowed not to appear in some of the equations in the system. Such a system covers various models arising from mathematical biology, in particular a West Nile virus model and an epidemic model considered recently in [16] and [44], respectively, where a “spreading-vanishing” dichotomy is known to govern the long time dynamical behaviour, but the question on spreading speed was left open. In this paper, we develop a systematic approach to determine the spreading profile of the system, and obtain threshold conditions on the kernel functions which decide exactly when the spreading has finite speed, or infinite speed (accelerated spreading). This relies on a rather complete understanding of both the associated semi-waves and travelling waves. When the spreading speed is finite, we show that the speed is determined by a particular semi-wave. This is Part 1 of a two part series. In Part 2, for some typical classes of kernel functions, we will obtain sharp estimates of the spreading rate for both the finite speed case, and the infinite speed case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.