Abstract

<abstract><p>In this paper, we consider a reaction-diffusion epidemic model with nonlocal diffusion and free boundaries, which generalises the free-boundary epidemic model by Zhao et al. <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup> by including spatial mobility of the infective host population. We obtain a rather complete description of the long-time dynamics of the model. For the reproduction number $ R_0 $ arising from the corresponding ODE model, we establish its relationship to the spreading-vanishing dichotomy via an associated eigenvalue problem. If $ R_0 \le 1 $, we prove that the epidemic vanishes eventually. On the other hand, if $ R_0 > 1 $, we show that either spreading or vanishing may occur depending on its initial size. In the case of spreading, we make use of recent general results by Du and Ni <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup> to show that finite speed or accelerated spreading occurs depending on whether a threshold condition is satisfied by the kernel functions in the nonlocal diffusion operators. In particular, the rate of accelerated spreading is determined for a general class of kernel functions. Our results indicate that, with all other factors fixed, the chance of successful spreading of the disease is increased when the mobility of the infective host is decreased, reaching a maximum when such mobility is 0 (which is the situation considered by Zhao et al. <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>).</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.