Abstract

When a pure ethanol droplet is deposited on a dry, wettable and conductive substrate, it is expected to spread into a thin, uniform film. Here, we demonstrate that this uniform spreading behaviour can be altered significantly by controlling the ambient relative humidity. We show that higher relative humidity not only promotes faster spreading of the droplet, it also destabilizes the moving contact line, resulting in a fingering instability. We observe that these effects primarily emerge due to the hygroscopic nature of the pure droplet, which eventually leads to solutal-Marangoni effects. Additionally, heat transfer between the evaporating droplet and the underlying substrate also plays a crucial role in the overall dynamics. Thus, the overall spreading of a pure hygroscopic droplet is determined by a delicate interplay between solutal and thermal Marangoni effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call