Abstract
Let P h be a self-adjoint semiclassical pseudodifferential operator on a manifold M such that the bicharacteristic flow of the principal symbol on T*M is completely integrable and the subprincipal symbol of P h vanishes. Consider a semiclassical family of eigenfunctions, or, more generally, quasimodes u h of P h . We show that on a nondegenerate rational invariant torus, Lagrangian regularity of u h (regularity under test operators characteristic on the torus) propagates both along bicharacteristics, and also in an additional “diffractive” manner. In particular, in addition to propagating along null bicharacteristics, regularity fills in the interiors of small annular tubes of bicharacteristics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have