Abstract

Extracellular recordings were performed in in vitro combined hippocampal-entorhinal cortex (HC-EC) slices obtained from control and amygdala kindled rats to investigate the spread of epileptiform activity from the entorhinal cortex (EC) to the hippocampus (HC). Epileptiform activity was induced by lowering extracellular Mg 2+ concentration. In control slices epileptiform activity was in most slices characterized by intericatal discharges and short recurrent discharges in areas CA1 and CA3 and by early seizure like events and late recurrent discharges in the EC and the subiculum. In spite of well preserved anatomical pathways in the combined HC-EC slice in which most of the fibre connectivity between the EC and the dentate gyrus (DG) is intact, seizure like events and late recurrent discharges generated in the EC had only moderate effects on the epileptiform activity in areas CA3 and CA1. In contrast in HC-EC slices obtained from kindled rats epileptiform activity generated in the EC spread to the DG and the areas CA3 and CA1. Kindling facilitates the propagation of seizure like events and late recurrent discharges through the HC-EC slice and appears to alter the filtering function of the DG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call