Abstract
Colloidal PbS quantum dots (QDs) are promising candidates for various optoelectronic applications based on solution-processed thin-film techniques. In this work, a versatile layer-by-layer (LBL) spray deposition of the QDs is introduced aiming for a future large-scale fabrication process of optoelectronic devices. As compared to spin-coated QD solids, a smaller inter-dot distance and a better-ordered superlattice stacking behavior of the QDs are found in the spray-deposited QD solids as confirmed by grazing-incidence small-angle X-ray scattering (GISAXS). The spectral mapping combined time-resolved photoluminescence analysis indicates a longer charge carrier lifetime and better order of the energy state distribution of the spray-deposited QD solid comparing with the spin-coated one. Thus, photodetectors based on spray deposition of QD solids demonstrate an excellent device performance, with the responsivity achieving 365.1 A/W and the detectivity reaching up to 1.4 × 1012 Jones under an illumination power of 63.5 μW/cm2 at a wavelength of 1250 nm. The spray-deposited device performances indicate a great potential of spray deposition of large sized QDs in large-scale fabrications for optoelectronics using longer wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.