Abstract

Colorimetric chemical sensing of target gases, such as hydrogen peroxide vapors, is an evolving area of research that implements responsive materials that undergo molecule-specific interaction, resulting in a visible color change. Due to the intuitive nature of an observable color change, such sensing systems are particularly desirable as they can be widely deployed at low cost and without the need for complex analytical instrumentation. In this work, we describe our development of a new spray-on sensing material that can provide a colorimetric response to the presence of a gas-phase target, specifically hydrogen peroxide vapor. By providing a cumulative response over time, we identified that part per million concentrations of hydrogen peroxide vapor can be detected. Specifically, we make use of iron chloride-containing formulations to enable the catalysis of hydrogen peroxide to hydroxyl radicals that serve to initiate polymerization of the diacetylene-containing amphiphile, resulting in a white to blue color transition. Due to the irreversible nature of the color change mechanism, the cumulative exposure to hydrogen peroxide over time is demonstrated, enabling longitudinal assessment of target exposure with the same coatings. The versatility of this approach in generating a colorimetric response to hydrogen peroxide vapor may find practical applications for environmental monitoring, diagnostics, or even industrial safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call