Abstract

Injector is one of the vital devices in liquid rocket engine (LRE) as small changes in its configurations and design can result in significantly different LRE performance. Characteristics of spray such as spray cone angle, breakup length and Sauter mean diameter (SMD) are examples of crucial parameters that play the important role in the performance of liquid propellant rocket engine. Wider spray cone angle is beneficial for widespread of fuel in the combustion chamber for fast quiet ignition and a shorter breakup length provides shorter combustion chamber to be utilized and small SMD will result in fast and clean combustion. There are several mechanisms of liquid atomization such as swirling, e.g. jet swirl atomization or introducing bubbles into the liquid and effervescent atomization. Introducing a swirl component in the flow can enhance the propellant atomization and mixing whereas introducing bubbling gas directly into the liquid stream inside the injector leads to finer sprays even at lower injection pressures. This paper reviews the influence of both operating conditions and injector internal geometries towards the spray characteristics of swirl effervescent injectors. Operating conditions reviewed are injection pressure and gas-to-liquid ratio (GLR), while the injector internal geometries reviewed are limited to swirler geometry, mixing chamber diameter (dc), mixing chamber length (lc), aeration hole diameter (da), discharge orifice diameter (do) and discharge orifice length (lo).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call