Abstract

Spray atomization of liquid fuel plays an important role in droplet evaporation, combustible mixture formation and subsequent combustion process. Well-atomized liquid spray contributes to high fuel efficiency and low pollutant emissions. Gasoline direct injection(GDI) has been recognized as one of the most effective ways to improve fuel atomization. As a special direct injection method, the air-assisted direct injection utilizes high-speed flow of high-pressure air at the injector exit to assist liquid fuel injection and promote spray atomization at a low injection pressure. This injection method has excellent application potential and advantages for high performance and lightweight engines. In this study, the hollow cone spray emerging from an air-assisted injector was studied in a constant volume chamber with the ambient pressures ranging from 5 kPa to 300 kPa. External macro characteristics of spray were obtained using high speed backlit imaging. Phase Doppler particle analyzer(PDPA) was utilized to study the microcosmic spray characteristics. The results show that under the flash boiling condition, the spray will generate a strong flash boiling point which causes the cone shape spray to expand both inwards and outwards. The axisymmetric inward expansion would converge together and form a lathy aggregation area below the nozzle and the axisymmetric outward expansion greatly increases the spray width. The sauter mean diameter (SMD) of flash boiling condition can be reduced to 5 μm compared to the level close to 10 μm in the non-flash boiling condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.