Abstract

T-wave alternans (TWA) refers to the periodic beat-to-beat variation in the amplitude of T-wave in the electrocardiogram (ECG) signal in an ABAB-pattern. TWA has been proven to be a very important indicator of malignant arrhythmia risk stratification. A new method to detect TWA by combining fractional Fourier transform (FRFT) and tensor decomposition is proposed. First, the T-wave vector is extracted from the ECG of each heartbeat, and its FRFT amplitudes at multiple orders are arranged to form a T-wave matrix. Then, a third-order tensor is composed of T-wave matrices of several consecutive heart beats. After tensor decomposition, projection matrices are obtained in three dimensions. The complexity of the projection matrix is measured by Shannon entropy to obtain feature vector to detect the presence of TWA. Results show that the sensitivity, specificity, and accuracy of the algorithm on the MIT-BIH database are 91.16%, 94.25%, and 92.68%, respectively. This method effectively utilizes the fractional domain information of ECG, and shows the promising potential of the FRFT in ECG signal processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.