Abstract

To investigate the effect of laser spot size on the outcome of aberration correction with scanning laser corneal ablation. Numerical simulation of ablation outcome. Correction of wavefront aberrations of Zernike modes from second to eighth order were simulated. Gaussian and top-hat beams of 0.6 to 2.0-mm full-width-half-maximum diameters were modeled. The fractional correction and secondary aberration (distortion) were evaluated. Using a distortion/correction ratio of less than 0.5 as a cutoff for adequate performance, we found that a 2 mm or smaller beam is adequate for spherocylindrical correction (Zernike second order), a 1 mm or smaller beam is adequate for correction of up to fourth order Zernike modes, and a 0.6 mm or smaller beam is adequate for correction of up to sixth order Zernike modes. Since ocular aberrations above Zernike fourth order are relatively insignificant, current scanning lasers with a beam diameter of 1 mm or less are theoretically capable of eliminating most of the higher order aberrations of the eye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call