Abstract
We theoretically study the spontaneous formation of the quantum anomalous Hall effect in a graphene system of spin-bifurcated exciton-polariton condensates under nonresonant pumping. We demonstrate that, depending on the parameters of the structure, such as intensity of the pump and coupling strength between condensates, the system shows a rich variety of macroscopic magnetic ordering, including analogs of ferromagnetic, antiferromagnetic, and resonant valence bond phases. Transitions between these magnetic polarized phases are associated with dramatic reshaping of the spectrum of the system connected with spontaneous appearance of topological order.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have