Abstract
The present study gives the proof of principle of a technique that is an extension of Kossel diffraction both from crystals to superlattices and toward the soft x-ray region, allowing the characterization of the interfaces within a periodic structure. We measure the intensity of the Co Lα and Mg Kα characteristic fluorescence emissions from a Mg/Co superlattice upon soft x-ray excitation. The observation is made so that the angle between the sample surface and the detection direction is scanned around the first and second Bragg peaks of the fluorescence emissions. Clear modulations of the emitted intensities are observed and well reproduced by simulations based on the reciprocity theorem and assuming a perfect stack. The present work gives evidence that such a superlattice plays the role of an optical cavity for the spontaneous emission generated within the stack. This should also be the case for stimulated emission, which when combined with pumping free electron laser, will open the road to innovative x-ray distributed feedback lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.