Abstract
Little is known about endogenous processes causing spontaneous mutagenesis in mammalian cells. To study this problem, a mathematical model and method developed previously in our laboratory was used to measure the spontaneous mutation rate in mammalian cells at the transgenic gpt locus in Chinese hamster G12 cells. We found that spontaneous mutagenesis increased when cells were cultured in low (< 0.25%) serum. These cells also contained higher oxidant levels, measured by dichloroflourescein (DCF) fluorescence, suggesting that the elevated spontaneous mutagenesis resulted from endogenous oxidants which are normally quenched by serum antioxidants. This was found to be the case. Spontaneous mutagenesis was significantly reduced in serum-depleted as well as control cells when catalase (100 ng/ml) or the antioxidants ascorbate (50 μg/ml) or mannitol (100–500 μg/ml) were added to the medium. Overexpression of metallothionein in these cells also suppressed spontaneous mutagenesis and mutagenesis induced by oxygen radical-generating compounds. Cells expressing metallothionein antisense RNA become mutators. Taken together, these results suggest that the major cause of spontaneous mutagenesis in mammalian cells is endogenously-generated oxidative DNA damage which can be blocked by metallothionein or by dietary antioxidants carried by the blood supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.