Abstract

This paper presents, for the general relativistic case, a theoretical study of nonresonance spontaneous bremsstrahlung by an electron scattered by a nucleus in the field of two elliptically polarized light waves propagating in the same direction. We show that there are two significantly different kinematic regions: the noninterference region where the main multiphoton parameters are the Bunkin-Fedorov quantum parameters γ1,2, and the interference region where interference effects play an important role and where the quantum interference parameters α(±) act as multiphoton parameters. We encounter the spontaneous interference bremsstrahlung effect in two cases: in the special case of the same linear polarization of both waves, and in the general case of elliptical polarization of the waves. The effect manifests itself in the interference region and is due to stimulated, correlated emission and absorption of photons of both waves. For moderately strong fields, we find the cross sections of spontaneous bremsstrahlung by an electron scattered by a nucleus in the given kinematic regions. Finally, we show that the differential cross section in the interference region with correlated emission (absorption) of equal numbers of photons of both waves can be much greater than the corresponding cross section in any other geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.