Abstract

Enhancing the sensitivity of nuclear magnetic resonance (NMR) technology has been the focus of NMR research for decades, which offers the potential to significantly expand its applications in chemistry, biology, and medical imaging. Parahydrogen-induced polarization (PHIP) emerges as a cost-effective approach to substantially enhance the sensitivity of NMR. Nevertheless, the amplification of the 1H signal in PHIP is susceptible to interference from the thermal polarization state 1H NMR signal. Employing RASER (radiofrequency amplification by stimulated emission of radiation) proves effective in mitigating such interference, which can reduce the linewidth and increase the sensitivity at the same time. In this work, we utilized PHIP and RASER to enhance the signal-to-noise ratio (SNR) of a series of biocompatible alkynyl organic acid molecules. The alkynyl acid with the highest enhancement factor was first identified through PASADENA (parahydrogen and synthesis allow dramatically enhanced nuclear alignment) experiments. Subsequently, RASER experiments were carried out through hyperpolarization of 5-hexynoic acid, exploring its signal characteristics under varying flow rates and pressures. The SNR of proton signals of 5-hexynoic acid surpassed 150,000, an 18.62-fold improvement compared with traditional hyperpolarized signals in PASADENA, and a markedly narrowed linewidth of 0.06 Hz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call