Abstract
Coacervation, the phase separation of liquid induced by polymeric solutes, sometimes results in the formation of oligomeric clusters of droplets. The morphology of the clusters is non-uniform because the clustering is a consequence of the random collisions of the drifting droplets. Herewereportdistinctively organized coacervation, yielding colloidal molecules with monodisperse size, morphological symmetry, and compositional heterogeneity.Weinvestigate the coacervation of a mixture of two types of synthetic polymers and find that one of the polymers coacervates first and serves as a core droplet, on which the other polymer coacervates subsequently to form satellite droplets. The satellite droplets arrange themselves symmetrically around the core and solidify without losing the morphology. The number of satellites and their symmetry are modulable depending on the chemical affinity and the diameter of the droplets. This finding highlights the capability of coacervation as a non-templated and non-covalent pathway to form aspherical colloidal materials with structural and functional complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.