Abstract

The spontaneous emission of a V-type Zeeman atom in a Fabry–Perot cavity containing left-handed materials (LHMs) is investigated. Because of the strong indirect quantum interference induced by the refocusing and phase compensation of LHMs, the population evolution and the emission spectrum are much different from that in isotropic environments at different initial conditions. For the degenerate cases, by preparing different initial states, the population decays much faster or slower than that in free vacuum, while the spontaneous emission spectra are narrowed or broadened, respectively. For large detuning cases, the population exchange between two upper levels could be weakened, and the Fano minimum appears in the emission spectrum. In addition, the influence of the dipole orientation on the spectrum is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call