Abstract

The two models of three-level (one upper level and two lower levels, or two upper levels and one lower level) atom embedded in a double-band photonic crystal are adopted. The atomic transitions from the upper levels to the lower levels are assumed to be coupled by the same reservoir which are respectively the isotropic photonic band gap (PBG) modes, the anisotropic PBG modes and the free vacuum modes. The effects of the fine structure of the atomic ground state levels in the model with one upper level and two lower levels and the quantum interferences in the model with two upper levels and one lower level on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PBG case. The quantum interferences induce additional narrow spontaneous lines near the transition from the empty upper level to the lower level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.