Abstract

The two models of three-level (one upper level and two lower levels, or two upper levels and one lower level) atom embedded in a double-band photonic crystal are adopted. The atomic transitions from the upper levels to the lower levels are assumed to be coupled by the same reservoir which are respectively the isotropic photonic band gap (PBG) modes, the anisotropic PBG modes and the free vacuum modes. The effects of the fine structure of the atomic ground state levels in the model with one upper level and two lower levels and the quantum interferences in the model with two upper levels and one lower level on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PBG case. The quantum interferences induce additional narrow spontaneous lines near the transition from the empty upper level to the lower level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call