Abstract

Using simultaneous thermal analysis-Fourier transform infrared spectroscopy, we analyzed the oxidation and exothermic behaviors of six types of coal based on various factors, such as characteristic temperature, heat release, and gas release, to establish a foundation for prevention and control of spontaneous combustion in six types of coal in China. According to the experimental results, a decrease in the metamorphic grade of coal causes an increase in the amount of volatile matter, the heat release rate, and the total heat released. The apparent exothermic onset temperature and initial temperature for the release of H2O, CO2, CO, and CH4 during the nonisothermal oxidation process of coal took place earlier, indicating that the oxidation reaction occurred more easily in lower-grade coal, increasing the hazards of spontaneous combustion. Moreover, when decomposing, coal releases large amounts of CH4, which may cause gas explosions in coal mines. Therefore, technology facilitating the detection of CH4 and prevention of explosions should be developed for use in the coal industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.