Abstract

Gas explosions in coal mines have occurred occasionally, which may cause casualties and economic losses. In the actual mine roadway, the gas concentration distribution is uneven because the gas density is lower than that of air. Gas explosion characteristics of uneven gas distribution with the concentration gradient in mine roadways were analyzed by using the open-source computational fluid dynamic code OpenFOAM. The flame and pressure characteristics were calculated, and the flame and shock wave propagation laws of the non-uniform gas-air mixture explosion with different concentration gradients were analyzed and compared with the uniform gas-air mixture gas. The results show that when the overall gas concentration is the same, the flame velocity and the pressure growth rate of the uniform gas explosion are lower than those of the non-uniform, but the pressure peaks of both are similar. At the same time, when the initial volume concentration is 10%, the non-uniform gas explosion has the highest flame propagation velocity and peak value. The peak explosion pressure of different concentration gradients is proportional to the initial concentration. The above studies clarified the characteristics of gas-air mixture explosions with concentration gradients and provided theoretical support for the prevention and control of gas explosion disasters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call