Abstract
Self-oscillating soft actuators that enable spontaneous and continuous motion under an external stimulus with no human intervention have attracted extensive attention due to the great value of the realization of more sustainable and low-power-consumption actuators. However, the achievement of such actuators that collect chemical energy from the fluctuations in ambient humidity is still a great challenge. Here, an actuator film based on spiropyran@agarose (SP@AG) that can spontaneously and continuously collect chemical energy from the fluctuations in ambient humidity is developed. It is noteworthy that the SP@AG film has excellent self-oscillation behavior and a high oscillation amplitude (184°) under the size (40 × 8 mm) or load of 116 mg (about 5.2 times of the film weight). Moreover, on the basis of the self-oscillating motion, an energy conversion device is constructed by integrating the soft actuator with a piezoelectric PVDF film, which can spontaneously and continuously generate an output voltage of about 30 mV. Finally, a proof of concept for an "intelligent light-controllable window" that can open under humidity stimulus and change color under light is proposed herein. Overall, the self-oscillating actuator driven by fluctuations in ambient humidity shows immense potential in response to the atmospheric humidity of day-night rhythm and humid-energy-harvesting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.