Abstract

Yttria-stabilized zirconia (YSZ) is a ceramic material in which the zirconium dioxide structure is stabilized at room temperature by adding yttrium oxide. However, the YSZ formed by the thick film process on a pre-sintered dense substrate suffers from sintering problems such as different sintering shrinkage rates due to phase transitions and thermal conductivity. This in turn can lead to de-bonding, cracking, delamination, and abnormal growth. We prepared a spherical YSZ green body of approximately 38 μm diameter formed by an organic binder based on a sintered YSZ seed with 15 to 20 μm diameter. In addition, the application of two-dimensional g-C3N4 nanosheets that can be adsorbed on the surface and pores of the green body before the sintering process was evaluated. The YSZ green body with adsorbed surface-modified g-C3N4 nanosheets could be synthesized by stable spontaneous adsorption due to zeta-potential attraction onto the surface of zirconia particles in an aqueous solution. Consequentially, the formation of large grains due to abnormal grain growth was reduced as g-C3N4 was adsorbed. The spontaneous adsorption of nanosheets controls the surface diffusion mechanism by sequentially lowering the energy from a high surface energy in the initial stage of sintering. Uniform grain growth thus can be induced according to the activation energy level of the controlled surface diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call