Abstract

We have investigated the potential for nonuniform grain boundary mobility to act as a persistence mechanism for abnormal grain growth (AGG) using Monte Carlo Potts model simulations. The model system consists of a single initially large candidate grain embedded in a matrix of equiaxed grains, corresponding to the abnormal growth regime before impingement occurs. We assign a mobility advantage to grain boundaries between the candidate grain and a randomly selected subset of the matrix grains. We observe AGG in systems with physically reasonable fractions of fast boundaries; the probability of abnormal growth increases as the density of fast boundaries increases. This abnormal growth occurs by a series of fast, localized growth events that counteract the tendency of abnormally large grains to grow more slowly than the surrounding matrix grains. Resulting abnormal grains are morphologically similar to experimentally observed abnormal grains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call