Abstract

We propose a novel concept associated with the relationship between structure and function in biomolecular systems. We performed a 75 nanoseconds molecular dynamics (MD) simulation for an RNA-binding protein, neuro-oncological ventral antigen (NOVA), and examined its physico-chemical properties. NOVA dissociated from the NOVA-RNA complex showed a large conformational change: formation of intra-molecular hydrogen bonds between the C-terminal region and the loop structure located at the middle of amino acid sequence. The free energy analysis suggests that the deformed structure is more stabilized in macromolecular crowding environment where the dielectric constant is smaller than 5. The solvent accessible surface area (SASA) analysis indicates that NOVA enhances the efficiency of association with RNA by changing the relative SASA for the target sequence in RNA molecules. Based on the obtained results, we propose a novel concept of spontaneous adjustment mechanism to explain the structural and energetic changes observed for NOVA in the free state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.