Abstract

Language identification is at the forefront of assistance in many applications, including multilingual speech systems, spoken language translation, multilingual speech recognition, and human-machine interaction via voice. The identification of indonesian local languages using spoken language identification technology has enormous potential to advance tourism potential and digital content in Indonesia. The goal of this study is to identify four Indonesian local languages: Javanese, Sundanese, Minangkabau, and Buginese, utilizing deep learning classification techniques such as artificial neural network (ANN), convolutional neural network (CNN), and long-term short memory (LSTM). The selected extraction feature for audio data extraction employs mel-frequency cepstral coefficient (MFCC). The results showed that the LSTM model had the highest accuracy for each speech duration (3 s, 10 s, and 30 s), followed by the CNN and ANN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.